
Infrastructure as Code
Comparing CloudFormation, Terraform, and CDK

Keith Gregory
AWS Practice Lead
Chariot Solutions

The Players

CloudFormation

Official AWS tool for declarative deployments

Templates defined in JSON or YAML, used to create Stacks

Can create multiple stacks from same template, using parameters to configure

All resources must be declared individually

Example: if you need 14 users, you’ll have 14 AWS::IAM::User resource declarations

Maximum number of resources per stack: 200

Modularity via nested templates/stacks

Can export resource references for use by another stack

As-of November 2019, can import existing resources into stack

Terraform

Multi-provider declarative infrastructure tool, produced by HashiCorp

Configurations defined using HCL: HashiCorp Configuration Language

Deployments tracked using “tfstate”

Must be preserved: checked-in to source control, stored on S3, or in HashiCorp repository

Warning: secrets stored in plaintext!

Can create multiple resources from a single declaration

Example: to create 14 users, first create a variable that lists those users’ names, then create an
aws_iam_user resource based on the size of this list

Can create modules for reusability

Can import existing AWS resources to bring them under Terraform control

Cloud Development Kit (CDK)

Open-source tool to generate/deploy CloudFormation templates

Generated templates contain same content as hand-written

You write an Application, which manages one or more Stacks

Default language: TypeScript

Also supports: JavaScript, Python, Java, and .Net

Constructs provide reusability

Low-level constructs represent CloudFormation resources (eg: users)

Higher-level constructs can create multiple resources, provide default values

CDK includes a library of constructs, or you can create your own

Task 1: Manage Users, Groups, Roles

Org Root
012345678901

Production
123456789012

QA
234567890123

Development
345678901234

Sandbox
456789012345

Users here

Roles here

Cross-Account Permissions Management

Roles in each child grant varying permissions

Users defined in parent, belong to Groups

Groups grant permission to assume roles

Group Permissions Policy

Attached to a group, applied to all users in group

Members of group allowed to assume one or more specific roles

Can specify multiple roles, corresponding to different applications/services

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::123456789012:role/ExampleProductionRole"
 }
]
}

Role Trust Policy

Each assumable role must include this trust policy

Anyone in account 012345678901 that can assume the role may do so

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::012345678901:root"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Teh Codez

CloudFormation: Basic Template
AWSTemplateFormatVersion: "2010-09-09"
Description: "Describe the stack"

Parameters:

 # parameters allow you to provide configuration

Resources:

 # resources are things that are created in your account

Outputs:

 # outputs let you expose attributes of created resources (eg, RDS hostname)

CloudFormation: Creating Users and Groups
Resources:

 User1:
 Type: "AWS::IAM::User"
 Properties:
 UserName: "user1"
 ManagedPolicyArns: [!Sub "arn:aws:iam::${AWS::AccountId}:policy/BasicUserPolicy"]
 Groups:
 - !Ref Group1
 - !Ref Group2

 Group1:
 Type: "AWS::IAM::Group"
 Properties:
 GroupName: "group1"

 Group2:
 Type: "AWS::IAM::Group"
 Properties:
 GroupName: "group2"

This policy was created outside of the stack

These references establish execution graph

CloudFormation: Assigning Roles to Groups
 Group1Policy:
 Type: "AWS::IAM::Policy"
 Properties:
 Groups: [!Ref Group1]
 PolicyName: "AllowRoleAssumption"
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 -
 Effect: "Allow"
 Action: ["sts:AssumeRole"]
 Resource:
 - !Sub "arn:aws:iam::${DevAccountId}:role/FooAppDeveloperRole"
 - !Sub "arn:aws:iam::${ProdAccountId}:role/FooAppReadOnlyRole"

CloudFormation: Parameterizing Account IDs

Parameters:

 ProdAccountId:
 Description: "Symbolic name for the production account ID"
 Type: "String"
 Default: "123456789012"

 DevAccountId:
 Description: "Symbolic name for the development account ID"
 Type: "String"
 Default: "345678901234"

Terraform: Creating Users
provider "aws" {}

variable "users" {
 type = list
 default = ["user1", "user2", "user3"]
}

resource "aws_iam_user" "users" {
 count = length(var.users)
 name = "${var.users[count.index]}"
}

This determines how many users we’ll create

This retrieves a different username for each item

Variables are like CloudFormation parameters

Terraform can support multiple cloud providers

Identifies the resource type
Name for specific resource definition

Terraform: Assigning Basic User Policy

data "aws_caller_identity" "current" {}

resource "aws_iam_user_policy_attachment" "base_user_policy_attachment" {
 count = length(var.users)
 user = "${var.users[count.index]}"
 policy_arn = "arn:aws:iam::${data.aws_caller_identity.current.account_id}:policy/BasicUserPolicy"
}

Data objects can retrieve information from AWS

One policy attachment per user

An object has multiple
named attributes

Identifies the
data object

Identifies the object
instance

Terraform: Assigning Users to Groups
variable "group_members" {
 type = map(list(string))
 default = {
 "user1" = ["group1", "group2"],
 "user2" = ["group1"],
 "user3" = ["group2"]
 }
}

resource "aws_iam_user_group_membership" "group-membership" {
 count = length(var.users)
 user = "${var.users[count.index]}"
 groups = "${var.group_members[var.users[count.index]]}"
}

Can use one variable as
an index for another

CDK: Getting Started

Each CDK project lives in its own directory, which must be initialized

cdk init app --language=typescript

This creates the directory structure, downloads modules needed for every project

You also need to install modules for each service that you use

npm install @aws-cdk/aws-iam

It’s a program, so you need to build it before use

npm run build

You can then either produce a CloudFormation template or deploy directly

cdk synth > template.json

cdk deploy

CDK: Things that go in Source Control

package.json NPM configuration file that defines build commands and
dependencies.

package-lock.json NPM configuration file that identifies specific dependency
versions, for all transitive dependencies.

tsconfig.json Configuration file for the TypeScript compiler.

cdk.json Project configuration file. At a minimum contains the command
used to build and run the project; can contain runtime config.

cdk.context.json Created by CDK to store runtime context values (eg, VPC ID).

bin/main.ts The CDK “application” (may have a different name).

lib/* User code for stacks and other constructs.

CDK: main.ts
#!/usr/bin/env node
import 'source-map-support/register';
import cdk = require('@aws-cdk/core');

import { UsersAndGroupsStack } from '../lib/stack';

const app = new cdk.App();
new UsersAndGroupsStack(app, 'UsersAndGroupsStack');

One application can build many stacks

CDK: stack.ts
import cdk = require('@aws-cdk/core');
import iam = require('@aws-cdk/aws-iam');

const userNames : string[] = ["user1", "user2", "user3"]

export class UsersAndGroupsStack extends cdk.Stack {

 constructor(scope: cdk.Construct, id: string, props?: cdk.StackProps) {
 super(scope, id, props);

 let stack = this

 // see next slide
 }
}

Stacks are a construct that runs within
another construct (the app)

You need to pass a reference to the stack to
set scope for other constructs, but it’s
JavaScript, so “this” changes all the time

You define all of the resources within the
stack’s constructor; this isn’t particularly
object-oriented, and limits refactoring

CDK: stack.ts (cont’d)
userNames.forEach(function(name) {

 const user = new iam.User(stack, name, {
 userName: name
 })

 user.addManagedPolicy({
 managedPolicyArn: stack.formatArn({
 service: "iam",
 region: "",
 resource: "policy",
 resourceName: "BasicUserPolicy"
 })
 })
})

We’re iterating over the array defined
as a script-level constant

Constructs are built with a scope, a
name, and a map of properties; the user
variable is rebound on each iteration

Some attributes must be set via
method call

The stack object provides several
utility functions

CDK: Output
Resources:
 user16DC45E76:
 Type: AWS::IAM::User
 Properties:
 ManagedPolicyArns:
 - Fn::Join:
 - ""
 - - "arn:"
 - Ref: AWS::Partition
 - ":iam::"
 - Ref: AWS::AccountId
 - :policy/BasicUserPolicy
 UserName: user1
 Metadata:
 aws:cdk:path: UsersAndGroupsStack/user1/Resource

(and so on)

CDK generates logical IDs

This is just nasty

Provides some level of
debuggability

But, wait, that’s not what CDK is good at!

Are You Deploying a Monolith?

Monolithic web-apps are usually deployed as a single stack

Micro-service architectures tend to deploy groups of related resources

● Compute
● Data storage
● Logging
● Permissions

Reusable components simplify your templates

Analogy: atoms versus molecules versus cells

What Goes Into Creating an SQS Queue?

What your developers care about:

Queue name / URL

What you, the application architect, care about:

Queue name

Visibility timeout

Redrive policy (includes creating a dead-letter queue)

Retention period

IAM policies (or policy snippets)

Application tags

Approaches to Reusability

CloudFormation

Nested stacks (soft limit of 200 stacks per account)

Custom resources (moves your infrastructure definition into a Lambda)

Terraform

Modules

CDK

Higher-order constructs (including many provided by AWS)

Terraform Modules

A mechanism for including one Terraform script inside another

Your main script is, in fact, a module, and can be included in another script

Modules are configured via variables, can provide information to caller via outputs

Convention: separate source files for variables, configuration, and outputs

Modules can be defined within the project or sourced externally

Sources include Terraform Registry, Git repository, S3 bucket, and HTTP(S) server

There are over 1,400 AWS modules available from Terraform Registry

https://registry.terraform.io/browse/modules?provider=aws

Terraform Module Example: variables.tf

variable "queue_name" {

 description = "The name of the queue. Used as a prefix for related resource names."

 type = string

}

variable "retention_period" {

 description = "Time (in seconds) that messages will remain in queue before being purged"

 type = number

 default = 86400

}

(and so on)

Terraform Module Example: main.tf

provider "aws" {}

resource "aws_sqs_queue" "base_queue" {

 name = var.queue_name

 message_retention_seconds = var.retention_period

 visibility_timeout_seconds = var.visibility_timeout

 redrive_policy = jsonencode({

 "deadLetterTargetArn" = aws_sqs_queue.deadletter_queue.arn,

 "maxReceiveCount" = var.retry_count

 })

}

(and so on)

Terraform Module Example: outputs.tf

output "base_queue_url" {

 value = aws_sqs_queue.base_queue.id

}

output "deadletter_queue_url" {

 value = aws_sqs_queue.deadletter_queue.id

}

output "consumer_policy_arn" {

 value = aws_iam_policy.consumer_policy.arn

}

output "producer_policy_arn" {

 value = aws_iam_policy.producer_policy.arn

}

Terraform Module Example: Invocation

provider "aws" {}

module "foo_queue" {

 source = "./modules/create_sqs"

 queue_name = "Foo"

}

…

resource "aws_iam_role_policy_attachment" "application_role_foo_producer" {

 role = aws_iam_role.application_role.name

 policy_arn = module.foo_queue.producer_policy_arn

}

CDK Constructs

A class definition that subclasses cdk.Construct

If your construct creates a single resource, subclass cdk.Resource

Can accept configuration parameters and expose attributes

Attributes must be calculable at build-time, do not reference actual AWS resource properties

Can live in project lib directory, or as installable Node library

CDK Construct Example: Properties

export interface StandardQueueConfig {

 /**

 * The name of the primary queue. This is used to construct the name

 * of the dead-letter queue and consumer/producer policies.

 */

 readonly queueName: string

}

CDK Construct Example: Attributes

export interface IStandardQueue extends cdk.IResource {

 /**

 * The primary queue

 * @attribute

 */

 readonly mainQueue: sqs.Queue;

 /**

 * The dead letter queue

 * @attribute

 */

 readonly deadLetterQueue: sqs.Queue;

(and so on)

CDK Construct Example: Construct

export class StandardQueue extends cdk.Construct {

 public readonly mainQueue: sqs.Queue;

 public readonly deadLetterQueue: sqs.Queue;

 public readonly consumerPolicy: iam.ManagedPolicy;

 public readonly producerPolicy: iam.ManagedPolicy;

 constructor(scope: cdk.Construct, id: string, props: StandardQueueConfig) {

 super(scope, id);

 this.mainQueue = new sqs.Queue(this, "Main", {

 queueName: props.queueName

 })

(and so on)

CDK Construct Example: Invocation
export class MultiQueueStack extends cdk.Stack {

 constructor(scope: cdk.Construct, id: string, props?: cdk.StackProps) {

 super(scope, id, props);

 const stack = this;

 const q1 = new StandardQueue(stack, "Foo", {

 queueName: "Foo"

 })

…

 const appRole = new iam.Role(sstackelf, "ApplicationRole", {

 roleName: self.stackName + "-ApplicationRole",

 assumedBy: new iam.ServicePrincipal('ec2.amazonaws.com'),

 managedPolicies: [q1.producerPolicy, q2.producerPolicy, q3.producerPolicy]

 })

 }

}

Closing Thoughts

Think About Your Module/Construct Design

Naming conventions

FooQueue, FooQueue-DLQ, SQS-FooQueue-ReaderPolicy, SQS-FooQueue-WriterPolicy

Prefer convention over configuration

The more consistency you have, the easier it is to maintain your code

Foo-DLQ versus Foo-DeadLetterQueue … does the difference matter?

Pick one style and move on!

IAM policy granularity

If the queue is to be used by multiple applications, it deserves its own reader/writer policies

If a single application uses multiple queues, it’s better to have a single application policy

Parameterize! (but not too much)

Use default values to create human-readable constants

Consistent parameter/variable names encourage automation

But beware: templates with many parameters are hard to manage

And likely to hide security holes

Consider externalizing configuration

CloudFormation dynamic references can access Parameter Store and Secrets Manager

Terraform also provides data sources that can retrieve these values (beware: stored in state!)

Some resources can retrieve configuration from Parameter Store/Secrets Manager directly

Leverage Runtime Information

Example: identifying public/private subnets for a VPC

This can determined by looking at the route table associated with each subnet, to determine
whether it has an Internet Gateway as the ultimate destination

Could also tag subnets with “public” and “private”

Things like this are “easy” programmatically, difficult declaratively

CloudFormation can use a custom resource (Lambda)

Terraform provides some “data” objects

CDK provides a “context” object

Or you could write a program to generate parameters/variables

Do It Yourself?

Anything that can produce JSON or YAML can create a CloudFormation template

There are several existing frameworks

CFNDSL for Ruby

Troposphere for Python

Opinion: most valuable when used by another script

Some Links

Example of creating users/groups with all three tools (plus CFNDSL)

https://github.com/chariotsolutions/aws-examples/tree/master/infrastructure-tools-comparison

Example of using modules/constructs to create SQS queues

https://github.com/chariotsolutions/aws-examples/tree/master/infrastructure-tools-comparison-2

CFRunner

A Python program that will create/update CloudFormations stacks, reading parameters from a file
and appending outputs to that file.

https://github.com/kdgregory/aws-misc/blob/master/utils/cf-runner.py

Chariot Solutions

https://chariotsolutions.com/

https://github.com/chariotsolutions/aws-examples/tree/master/infrastructure-tools-comparison
https://github.com/chariotsolutions/aws-examples/tree/master/infrastructure-tools-comparison-2
https://github.com/kdgregory/aws-misc/blob/master/utils/cf-runner.py
https://chariotsolutions.com/

