
Cognito?

What is it, and why do I care?

Disclaimers
I do not work for Amazon

My use of Cognito is at the “evaluation” level, not production

All trademarks belong to their owners, whether or not identified

Cognito is a collection of services
Identity Pools (IDP)

Database of users

Provides authentication, token-based authorization, 2FA

Handles communications for password resets, lost passwords, …

Federated Identities

Allow users to login with external identity providers

Associate IAM roles with federated identity tokens

Sync

Store user-relevant data and share across devices

Classified as a “Mobile” service

Provides several services useful in possibly-untrusted clients/networks

Time-limited AWS keys

Synchronization of user data across devices

Login using Secure Remote Password (SRP) protocol

But also available from server-side SDKs (eg: Java, Python)

Part 1: Identity Pools

Features
Maintains a store of users with passwords and profile data

Signup may be user-initiated or system-initiated

Sends messages to users for email/SMS verification, password reset

Two-factor authentication via SMS

Clients can correct directly via AWS-supplied SDK, or mediated by app-server

Creating the Identity Pool
This isn’t supported by CloudFormation (yet)

Can add “profile” attributes at time of pool creation, not afterward

Need to include email/SMS if you want verification

Probably not worthwhile to mark these as aliases

Do you want to allow self-signup or force admin creation?

In addition to pool, you must create an “app” (aka client ID)

Do not create/require a client secret!

User Flow: Self-signup

User App-Server Cognito

/signup
SignUp

(response -- status)
(response)

Email with Confirmation Code

/confirm
ConfirmSignUp

(response -- status)
(response)

/signin
AdminInitiateAuth

(response -- tokens)
(response -- tokens)

User Flow: Admin-created

User App-Server Cognito

/signup
AdminCreateUser

(response -- status)
(response)

Email with Temporary Password

/confirm
AdminInitiateAuth

(response -- challenge)

AdminInitiateAuth

(response -- tokens)
(response -- tokens)

User Tokens
Access Token

JWT token using RS256 signature

Expires after 1 hour (no ability to increase/decrease)

Can be used to retrieve user profile data

ID Token

Similar to Access token but includes user profile data

Refresh Token

Opaque string used to retrieve new Access tokens

Default expiration is 30 days, can be configured when creating pool

Sample Access Token
{
 "kid":"1D18kVZ5Z\/C1NjxSzwLmfDaO5BSru\/fsxvpCBvz1hnw=",
 "alg":"RS256"
}

{
 "sub":"fb3169fb-45d0-459b-9255-ca3d86f74f00",
 "token_use":"access",
 "scope":"aws.cognito.signin.user.admin",
 "iss":"https:\/\/cognito-idp.us-east-1.amazonaws.com\/us-east-1_myouCfMMh",
 "exp":1492382746,
 "iat":1492379146,
 "jti":"f89c3999-8b33-4904-8e36-2fb9f250db70",
 "client_id":"63bqoilc7topfsqblqgfcgse4o",
 "username":"test1354@mailinator.com"
}

JWT Keys
https://cognito-idp.{region}.amazonaws.com/{userPoolId}/.well-known/jwks.json

"keys": [{
 "alg": "RS256",
 "e": "AQAB",
 "kid": "1D18kVZ5Z/C1NjxSzwLmfDaO5BSru/fsxvpCBvz1hnw=",
 "kty": "RSA",
 "n": "n6YKOfsqcsWF6Z…",
 "use": "sig"
}, …]

Caveats and Quirks
Temporary password email does not confirm email address

Two-factor authentication uses SMS

(Java SDK) Sometimes response is a value, sometimes an exception

Beware rate limiting

Part 2: Federated Identities

Features
Associates external authentication provider with Amazon ID

Well-known services: Amazon, Facebook, Google, Twitter

Cognito IDP

Anyone supporting OpenID Connect or SAML

Identity token is used to retrieve limited-time access token from STS

This is the basis for access to Cognito Sync, but could be used for any other AWS service

Allows unauthenticated access to a limited set of services

Authentication Flow

Source: http://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html

Setting up Roles for Federated Identities
Two default roles: one for authenticated users, one for unauthenticated

Must define trust relationship for cognito-identity.amazonaws.com

Restrict role to specific identity pools via cognito-identity.amazonaws.com:aud

Restrict role to authenticated/unauthenticated via cognito-identity.amazonaws.com:amr

Authenticated users may assume an explicit role (if permitted)

Caveats and Quirks
When using 3rd-party provider, you don’t control who gets authorized

Unless you want to add a lot of fine-grained conditions to your trust relationships

With Cognito IDP identity provider must use ID token, not Access token

For More Information
Post describing how to use Cognito IDP in app-server

http://blog.kdgregory.com/2016/12/server-side-authentication-with-amazon.html

Serverless application using Cognito for authentication (ongoing project)

https://github.com/kdgregory/example-lambda-java

My web site

http://kdgregory.com/index.php?page=programming

http://blog.kdgregory.com/2016/12/server-side-authentication-with-amazon.html
https://github.com/kdgregory/example-lambda-java
http://kdgregory.com/index.php?page=programming

