

Taming
Maven

Keith D Gregory
Philly JUG
14 November 2012

Reasons to Love Maven

● Dependency
management

● Consistent project
structure

● 97% of the time,
It Just Works

Reasons to Hate Maven

● Verbose and Repetitive
● “Repeatable Builds”

are a myth
● It's the Maven Way

or the Highway
● 0.01% of the time,

welcome to the
Pit of Despair

Alternatives
● Gradle

● Mix of Declarative and Imperative
● Ready for Prime Time?

● Ant/Maven Ant Tasks
● Dependency Management and Deployment for existing

Ant scripts
● Ant/Ivy

● Dependency Management for Ant
● YABF (Yet Another Build File)

● Other (typically non-Java JVM projects)

What is Maven?

● A framework to run plugins
● Compiler / Test-Runner / Jar / &c
● Will download plugin versions as needed
● Each plugin has one or more goals

● Build process consists of phases
● clean / compile / test / package / &c

● Arbitrary goals may be bound to arbitrary phases
● Default life-cycle covers most cases

● Bindings defined by Maven, based on artifact type
● mvn clean install

Hello World – POM

<project xmlns="http://maven.apache.org/POM/4.0.0">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.example.hello</groupId>
 <artifactId>hello</artifactId>
 <version>1.0-SNAPSHOT</version>

</project>

http://maven.apache.org/POM/4.0.0

Standard Project Layout

● pom.xml
● src/main/java
● src/main/resources
● src/test/java
● src/test/resources
● src/main/webapp
● src/site

Dependencies

● Specifies the JARs you need to build and run
<dependencies>
 <dependency>
 <groupId>net.sf.practicalxml</groupId>
 <artifactId>practicalxml</artifactId>
 <version>1.1.14</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.10</version>
 <scope>test</scope>
 </dependency>
</dependencies>

● Scopes: compile, test, runtime, provided

Transitive Dependencies

● The dependencies that your dependencies
depend upon

● Beware: transitive dependencies are
indistinguishable from direct … until the direct
dependency disappears

● Transitive dependencies may also introduce
unexpected JARs, duplicate classes

Archetypes

● Generates project directories / files
● Slightly less effort than copying existing project

● Value is in the files created (eg: web.xml)
● Allows consistent customization

Parent POM

● Not just used for multi-module projects
● POMs form a hierarchy

● Every POM descends from the “super POM”
● Children inherit settings from their parents, can

override
● POMs are versioned, just like other artifacts

Plugin Management

● Parent POM specifies common plugin config
● Example: Source/Target compiler versions

● Child POM can override

Dependency Management

● Parent POM can specify version of
dependencies used by children
● This is usually a Bad Thing
● Version ranges make it less of a Bad Thing

● Also allows consistent exclusion of transitive
dependencies
● This can be a Good Thing

● Use sparingly!

Version Properties

● Defined in <properties>
● Can be overridden on command line
● Or in child POM

● Used in <dependency>
● Properties not limited to versions

Extract Dependencies

● Useful when many projects have the same set
of dependencies
● Example: Spring MVC Web-Apps

● Create a project that contains just a POM with a
<dependencies> section

● Your projects depend on this “dependency”
project
● And they get the transitive dependencies

Local Repository Server

● Local server for artifacts
● Nexus
● Artifactory
● Apache

● Proxies Maven Central, other public repos
● Allows upload of restricted 3rd-party artifacts
● A place to deploy corporate artifacts

Continuous Build/Deploy

● Deploy snapshots as soon as they're built
● Can also configure to deploy production builds

● Servers that understand Maven will
automatically build dependent projects
● Flushes out incompatible changes

The Goal: More, Smaller Projects

● Reduces amount of work in each build
● Projects should be self-contained modules
● Path to OSGi

Tools

● M2Eclipse (m2e)
● Maven Dependency Plugin

● dependency:analyze
● dependency:tree
● dependency:build-classpath

● PomUtil (http://github.com/kdgregory/pomutil)
● Normalize dependencies and add version props
● Check for used/unused/mis-scoped dependencies
● Inter-dependencies, co-dependencies, build order
● Generate a parent POM

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

