
Are You
Covered?

Keith D Gregory

Philly JUG

14 October 2009

What is Coverage?

Measurement of how well your tests

exercise your code

Metric: percent coverage

Coverage tools modify bytecode,

inserting counters, then report result

Bytecode Modification

public class Hello

{

 public static void main(String[] argv)

 throws Exception

 {

 System.out.println("Hello, World");

 }

}

public static void main(java.lang.String[])

throws java.lang.Exception;

 Code:

 0: getstatic #19; //Field

java/lang/System.out:Ljava/io/PrintStream;

 3: ldc #25; //String Hello, World

 5: invokevirtual #27; //Method

java/io/PrintStream.println:(Ljava/lang/String;)V

 8: return

javac

public static void main(java.lang.String[])

throws java.lang.Exception;

 Code:

 0: getstatic #41; //Field $VR4019:[[Z

 3: iconst_1

 4: aaload

 5: astore_1

 6: getstatic #19; //Field

java/lang/System.out:Ljava/io/PrintStream;

 9: ldc #25; //String Hello,

World

 11: invokevirtual #27; //Method

java/io/PrintStream.println:(Ljava/lang/String;)V

 14: aload_1

 15: iconst_0

 16: iconst_1

 17: bastore

 18: return

emma

Levels of Coverage

Class / Method / Line

Obsolete

Basic Block

Inserts counters after every branch

Shows partial coverage of if / loop / ternary

Reporting

Tools

Cobertura

http://cobertura.sourceforge.net/

Plugins for Ant, Maven 2

Licensed under GPL

Emma

http://emma.sourceforge.net/

Plugins for Ant, Maven 1, Eclipse

Can instrument on-the-fly via classloader

Licensed under IBM CPL

When to Run?

Daily or after Significant Change

Every build is too often

“Just before release” is not enough

Run first thing in morning, or after lunch

IDE integration encourages usage

Useful habit: follow with FindBugs™

Coverage Beyond the Unit Test

Interactive (desktop) applications

Instrumentation adds minimal overhead

Goal: identify action invocations (class-level
coverage sufficient)

In-container testing of web-apps

Integration tests

Check on manual QA

The Problem

Coverage tools can only tell you whether

your tests exercise your code

They won’t tell you about missing

features or missed specifications

The report can be misleading

You can get 100% coverage without fully

testing your code

Misleading Reports

It’s easy to put counters in bytecode

It’s harder to tie back to Java

Particularly if Hotspot modifies that code

Different tools may report different

coverage for same code

Example: switch statement

Independent Paths

How many paths

through this code?

How many tests for

100% coverage?

public int myFunc(int a, int b, int c)

{

 if (a > 5)

 c += a;

 if (b > 5)

 c += b;

 return c;

}

assertEquals(2, myFunc(2, 2, 2));

assertEquals(21, myFunc(7, 7, 7));

Independent Paths

Every non-trivial program has

independent paths

Number of paths increases geometrically

with number of “ifs”

Multi-threaded programs add time

dimension — infinite number of paths

Independent Path Identification

Truth Table

Can become unmanageable

Useful as checklist for high-level code

Cyclomatic Complexity

Generated as part of Cobertura report

Bob Martin’s “C.R.A.P.” index

Independent Path Resolution

Refactor Mercilessly

Goal: one decision per method

High-level tests simply verify that lower-

level methods were called

Exceptions

Most tests verify “happy path”

Need tests for likely exceptions

Understand boundary conditions

Not all exceptions can/should be tested

Configuration exceptions from third-party libraries

Exceptions that are rethrown or logged

Missing Features

“That test, I do not think it tests what

you think it tests”

Tests should be tied to specifications

Are any specifications sufficiently detailed?

What about TDD?

Formal Test Driven Development:

Write minimal failing unit test

Write minimal mainline code to pass this test

Refactor and repeat

This guarantees 100% coverage!

Beware when removing duplicated code

Coverage tools useful to find dead code

Sometimes, different code does different stuff

What about Getters & Setters?

Should be tested as part of normal use

Don’t write tests just to validate they work

If not, why are they there?

Is your code accessing the underlying members?

Or is the data never used?

Code That Can’t Be Tested

Unreachable code

Example: default switch clause for enum

Exceptions that require drastic effort to

induce

Example: configuration exception for JDK XML
parser

Should such code even exist?

The Bottom Line

Coverage tools are valuable

They clearly highlight code that isn’t tested / used

100% coverage is unreasonable

Defensive coding may create unreachable code

100% coverage is not enough

Tests need to validate, not simply exercise

The Real Bottom Line

There’s no substitute for a
dedicated, thoughtful,

test-infected programmer

For More Information

http://www.kdgregory.com/index.php?page=junit.cov

erage

