
Copyright 2007, Keith D Gregory

Java Reference Objects
or

How I Learned to Stop Worrying and Love
OutOfMemoryError

Copyright 2007, Keith D Gregory

Contents

Object Life Cycle

Types of Reference Objects

Memory Management with Soft and Weak References

Replacing Finalizers by Phantom References

Unit Testing with Reference Objects

Copyright 2007, Keith D Gregory

Role of Stack and Heap

Stack holds all local variables,
including method parameters
and object references

Heap holds object data

Stack Heap

fo
o’

s
ca

lle
r

baz

bar

...

...

...

fo
o

"123"

123

public static void foo(String bar)

{

 Integer baz = new Integer(bar);

}

Copyright 2007, Keith D Gregory

Garbage Collection Process

Heap

����

����

����

���� ����

���� ���� ���� ����

���� ���� ����

����

Heap

����

����

����

���� ����

���� ���� ���� ����

���� ���� ����

����

Heap

����

����

��������

����

���� ���� ���� ���� ����

����

����

����

Mark

Compact

Sweep

Copyright 2007, Keith D Gregory

Object Life Cycle pre Reference Objects

new operator creates the object, constructor initializes it
• These are separate steps!

In-use (reachable) when program can access it
• Chain of references from static member variable, local method

variable, or in-process expression

Unreachable when nothing points to it
• But the garbage collector only runs when JVM needs memory

• May never happen!

Finalizer is run after object is selected for collection
• Memory becomes available only after finalizer runs — if it exists

Created Initialized In Use Unreachable Finalized

Copyright 2007, Keith D Gregory

Object Life Cycle post Reference Objects

Unreachable objects are still eligible for collection

But there are different levels of unreachability
• Garbage collector is more/less aggressive

• Docs indicate strict hierarchy, that’s misleading: reachability
depends on the reference objects you use

Created Initialized
Strongly

Reachable

Phantom
Reachable

Finalized

Softly
Reachable

Weakly
Reachable

Copyright 2007, Keith D Gregory

How Reference Objects Work

Program
Code

Reference
Object

Referent

Adds a layer of indirection
• Call get() on the reference object to access referent

• get() returns null when referent is collected (reference is “cleared”)

Program must hold a strong reference to the reference
object itself

• Otherwise it will be collected

Program must hold strong reference to referent while
accessing it

• Otherwise it might be reclaimed between two statements

Phantom references are … different

Copyright 2007, Keith D Gregory

Types of Reference Objects

SoftReference
• Doesn’t prevent garbage collector from reclaiming referent, but

asks nicely that it be left alone

• “Official” use: memory-sensitive cache

• Better use: circuit breaker

WeakReference
• Garbage collector will reclaim referent at the drop of a hat

• Useful when you want to attach data to an object with limited
lifetime

• Or for a canonicalizing map

PhantomReference
• Lets program know when garbage collector has already

marked referent for collection, allowing program-controlled
cleanup

• Can’t be used to access referent directly — get() returns null

Copyright 2007, Keith D Gregory

Reference Queues

Reference objects may be associated with a
ReferenceQueue when created, will be added
to that queue when cleared

• Program can poll ReferenceQueue to find cleared objects

• Must still hold a strong reference to the reference object, or it
will be collected — queue doesn’t hold strong reference

The only way to work with Phantom references

Also useful for cleaning up
• Can poll with a background thread

• Or just check the queue when creating new objects

Copyright 2007, Keith D Gregory

Soft References as Circuit Breaker

Technique
• Hold large object via SoftReference while performing

memory-intensive operations

• Switch to strong reference to update the large object

• If reference is cleared, operation fails

Rationale
• Memory consumption tends to be localized

• Failing single operation is better than throwing
OutOfMemoryError

Not a silver bullet
• Always a window where OutOfMemoryError is possible

• Sometimes you can’t control this (eg, DOM tree)

Copyright 2007, Keith D Gregory

Code in need of a circuit breaker

public static List<List<Object>> processResults(ResultSet rslt)

throws SQLException

{

 try {

 List<List<Object>> results = new LinkedList<List<Object>>();

 ResultSetMetaData meta = rslt.getMetaData();

 int colCount = meta.getColumnCount();

 while (rslt.next())

 {

 List<Object> row = new ArrayList<Object>(colCount);

 for (int ii = 1 ; ii <= colCount ; ii++)

 row.add(rslt.getObject(ii));

 results.add(row);

 }

 return results;

 }

 finally {

 closeQuietly(rslt);

 }

}

Copyright 2007, Keith D Gregory

Adding Soft References

SoftReference<List<List<Object>>> ref

 = new SoftReference<List<List<Object>>>(

 new LinkedList<List<Object>>());

while (rslt.next())

{

 List<Object> row = new ArrayList<Object>(colCount);

 for (int ii = 1 ; ii <= colCount ; ii++)

 row.add(rslt.getObject(ii));

 List<List<Object>> results = ref.get();

 if (results == null)

 throw new ResultsTooLargeException();

 else

 results.add(row);

 results = null;

}

Copyright 2007, Keith D Gregory

Weak References for auto-clear cache

Often useful to attach data to an object via Map
• Particularly if you can’t extend / decorate the original object

• However, a normal Map can turn into a memory leak, as it
always holds a strong reference to the base object

If the map uses a weak reference, once the
program is done with the object the associated
data goes as well

• Example: ThreadLocal

• Should be used by ObjectOutputStream , but isn’t

JDK provides WeakHashMap
• Keys are held by weak references, values by strong references

• When the weak references are cleared, map entry is removed

Copyright 2007, Keith D Gregory

Canonicalizing Maps

Always returns the same value for a given key
• Think String.intern()

Useful when processing data with duplicates
• Pass raw data through map, replace duplicated objects with

canonical object

• If there isn’t a strong reference to the object, no need to hold it
in the map — replace it next time through

Both key and value must be held via weak
reference

• WeakHashMap isn’t sufficient on its own

• But it provides a good starting point

Copyright 2007, Keith D Gregory

Interning strings via Weak References

private Map<String,WeakReference<String>> _map

 = new WeakHashMap<String,WeakReference<String>>();

public static synchronized String intern(String str)

{

 WeakReference<String> ref = _map.get(str);

 String s2 = (ref != null) ? ref.get() : null;

 if (s2 != null)

 return s2;

 _map.put(str, new WeakReference(str));

 return str;

}

Copyright 2007, Keith D Gregory

The Trouble with Finalizers

Finalizers introduce a break between identifying a
dead object and reclaiming its memory

• Dead objects go into finalization queue

• If every dead object has a finalizer, you’ll get OOM

Finalization takes place on a separate thread
• In practice, just one thread

• A slow finalizer can leave the heap full of uncollected objects

Finalizer may never run
• Only run when when GC identifies object as dead — if GC

doesn’t run, finalizer isn’t executed

• This applies to phantom references as well, but your program can
iterate over the references manually

Copyright 2007, Keith D Gregory

Using Phantom References

The phantom reference must be associated with a
ReferenceQueue

• The reference is enqueued when its referent is marked for collection

• The memory is not freed until the reference is dequeued!

Program accesses the referent directly, lets it go out
of scope

• Must keep a separate (strong) reference to the resources

Factory
Reference

Object

Referent

Resources to
be reclaimed

Reference
Queue

Consumer

Copyright 2007, Keith D Gregory

Phantom Reference Example

Database connection pool
• Wraps actual connection, returns wrapper

• Connection returns to pool via close() or wrapper collection

private ReferenceQueue<Object> _refQueue = // ...
private IdentityHashMap<Object,Connection> _ref2Cxt = // ...
private IdentityHashMap<Connection,Object> _cxt2Ref = // ...

// ...

private Connection wrapConnection(Connection cxt)
{
 Connection wrapped = new PooledConnection(this, cxt);
 PhantomReference<Connection> ref =
 new PhantomReference<Connection>(wrapped, _refQueue);
 _cxt2Ref.put(wrapped, ref);
 _ref2Cxt.put(ref, wrapped);
 return wrapped;
}

Copyright 2007, Keith D Gregory

Unit Testing and Reference Objects

It isn’t easy
• Running out of memory is harder than it looks

• System.gc() is just a hint

• Make sure that you don’t hold strong references to the referent

But you have to do it
• Reference objects become useful when living on the edge —

too easy to fall off if you don’t test

Build task-specific scaffolding
• Example: ResultSet implementation that returns large

byte[] s on every call to getObject()

Write development-only tests
• Sometimes Hotspot gets in the way

Copyright 2007, Keith D Gregory

Additional Reading

The “companion volume” to this presentation.
• http://www.kdgregory.com/index.php?page=java.refobj

Sun’s current whitepaper on tuning the garbage collector, which provides some
good background information on how the collector works (Sun JVM only).

• http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html

An article from Brian Goetz, about using Weak references to associate objects with
limited lifetimes. I don’t often use this technique, so only touched on it lightly in this
presentation. I recommend reading his entire series of articles.

• http://www.ibm.com/developerworks/java/library/j-
jtp11225/index.html?S_TACT=105AGX02&S_CMP=EDU

